Lossfrom subthresholdleakage canbereducedbyraisingthe thresholdvoltage andloweringthesupplyvoltage.B...

微信扫一扫

Minimizing Energy Loss

123 上海发控
订阅
135
1周前

Loss from subthreshold leakage can be reduced by raising the threshold voltage and lowering the supply voltage. Both these changes slow down the circuit significantly. To address this issue, some modern low-power circuits use dual supply voltages to improve speed on critical paths of the circuit and lower power consumption on non-critical paths. Some circuits even use different transistors (with different threshold voltages) in different parts of the circuit, in an attempt to further reduce power consumption without significant performance loss.

Another method that is used to reduce power consumption is power gating:[7] the use of sleep transistors to disable entire blocks when not in use. Systems that are dormant for long periods of time and "wake up" to perform a periodic activity are often in an isolated location monitoring an activity. These systems are generally battery- or solar-powered and hence, reducing power consumption is a key design issue for these systems. By shutting down a functional but leaky block until it is used, leakage current can be reduced significantly. For some embedded systems that only function for short periods at a time, this can dramatically reduce power consumption.

Two other approaches also exist to lower the power overhead of state changes. One is to reduce the operating voltage of the circuit, as in a dual-voltage CPU, or to reduce the voltage change involved in a state change (making a state change only, changing node voltage by a fraction of the supply voltage—low voltage differential signaling, for example). This approach is limited by thermal noise within the circuit. There is a characteristic voltage (proportional to the device temperature and to the Boltzmann constant), which the state switching voltage must exceed in order for the circuit to be resistant to noise. This is typically on the order of 50–100 mV, for devices rated to 100 degrees Celsius external temperature (about 4 kT, where T is the device's internal temperature in Kelvins and k is the Boltzmann constant).

The second approach is to attempt to provide charge to the capacitive loads through paths that are not primarily resistive. This is the principle behind adiabatic circuits. The charge is supplied either from a variable-voltage inductive power supply or by other elements in a reversible-logic circuit. In both cases, the charge transfer must be primarily regulated by the non-resistive load. As a practical rule of thumb, this means the change rate of a signal must be slower than that dictated by the RC time constant of the circuit being driven. In other words, the price of reduced power consumption per unit computation is a reduced absolute speed of computation. In practice, although adiabatic circuits have been built, it has been difficult for them to reduce computation power substantially in practical circuits.

Finally, there are several techniques for reducing the number of state changes associated with a given computation. For clocked-logic circuits, the clock gating technique is used, to avoid changing the state of functional blocks that are not required for a given operation. As a more extreme alternative, the asynchronous logic approach implements circuits in such a way that a specific externally supplied clock is not required. While both of these techniques are used to different extents in integrated circuit design, the limit of practical applicability for each appears to have been reached.

以上内容来自上海发控推送
订阅
分享 0 曝光 2832 浏览 135 互动 0
填写资料获支持

为了更好的帮助规模以上企业数字化转型升级,杭州电子商务研究院(eb.ac.cn)组织了专家资源为企业的在数字技术营销(Martech)、智能制造(ERP)、客户管理(CRM)、数据资产、AI知识库管理(EKP)、品牌与知识产权保护及IP打造等专业领域提供公益咨询、辅导服务。 我院成立了“2B2C数智联盟”企业家社群,欢迎C✘O们加入。 填写以下信息后,将有工作人员与您联系。

{{item.label}}
支持 反馈 管理

长按下方二维码,加我微信

微信号
复制微信号

打开微信加我好友

杭州电子商务研究院

通过微信关注公众号